Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60.209
1.
Trop Anim Health Prod ; 56(4): 152, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722369

Supplementing livestock grazing communal rangelands with leaf-meals from Acacia trees, which are currently considered as problematic invasive alien plants globally, may be a sustainable way of exploiting their desirable nutritional and anthelmintic properties. The current study evaluated worm burdens and growth performance of lambs grazing low-quality communal rangelands supplemented with leaf-meals prepared from the invasive alien plant species; Acacia mearnsii or A. dealbata. Forty, three-month-old ewe lambs weighing an average of 18.9 ± 0.60 kg were randomly allocated to four supplementary diets: (1) rangeland hay only (control), (2) commercial protein supplement plus rangeland hay, (3) A. mearnsii leaf-meal plus rangeland hay and (4) A. dealbata leaf-meal plus rangeland hay. All the supplementary diets were formulated to meet the lambs' minimum maintenance requirements for protein. All the lambs were grazed on communal rangelands daily from 0800 to 1400 after which they were penned to allow them access to their respective supplementary diets until 08:00 the following morning. The respective supplementary diets were offered at the rate of 400 g ewe- 1 day- 1 for 60 days. Lambs fed the commercial protein supplement had the highest dry matter intake followed by those fed the Acacia leaf-meals and the control diet, respectively (P ≤ 0.05). Relative to the other supplementary diets, lambs fed the commercial protein supplement and A. dealbata leaf-meal had higher (P ≤ 0.05) final body weight and average daily gains. Dietary supplementation did not affect lamb faecal worm egg counts over the study period (P > 0.05). There was no association between supplementary diets and lamb FAMACHA© scores (P > 0.05). It was concluded that supplementation of Acacia dealbata versus Acacia mearnsii has the potential to emulate commercial protein in maintaining growth performance of lambs grazing communal rangelands in the dry season.


Acacia , Animal Feed , Diet , Dietary Supplements , Plant Leaves , Animals , Animal Feed/analysis , Plant Leaves/chemistry , Dietary Supplements/analysis , Female , South Africa , Diet/veterinary , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Sheep/growth & development , Sheep/physiology , Feces , Random Allocation , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena
2.
World J Microbiol Biotechnol ; 40(6): 194, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713319

The development and utilization of probiotics have many environmental benefits when they are used to replace antibiotics in animal production. In this study, intestinal lactic acid bacteria were isolated from the intestines of Cherry Valley ducks. Probiotic lactic acid bacterial strains were screened for antibacterial activity and tolerance to produce a Lactobacillus spp. mixture. The effects of the compound on the growth performance and intestinal flora of Cherry Valley ducks were studied. Based on the results of the antibacterial activity and tolerance tests, the highly active strains Lactobacillus casei 1.2435, L. salivarius L621, and L. salivarius L4 from the intestines of Cherry Valley ducks were selected. The optimum ratio of L. casei 1.2435, L. salivarius L621, and L. salivarius L4 was 1:1:2, the amount of inoculum used was 1%, and the fermentation time was 14 h. In vivo experiments showed that compared with the control group, the relative abundances of intestinal Lactobacillus and Blautia were significantly increased in the experimental group fed the lactobacilli compound (P < 0.05); the relative abundances of Parabacteroides, [Ruminococcus]_torques_group, and Enterococcus were significantly reduced (P < 0.05), and the growth and development of the dominant intestinal flora were promoted in the Cherry Valley ducks. This study will provide more opportunities for Cherry Valley ducks to choose microecological agents for green and healthy breeding.


Ducks , Gastrointestinal Microbiome , Intestines , Lactobacillus , Probiotics , Animals , Probiotics/pharmacology , Ducks/microbiology , Gastrointestinal Microbiome/drug effects , Lactobacillus/isolation & purification , Intestines/microbiology , Fermentation , Animal Feed , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology
4.
Trop Anim Health Prod ; 56(4): 153, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717731

Ensilage of refused fruit with forage is a viable approach to increase resource use in ruminant feed. The objective of this study was to investigate the impact of ensiling refused melon fruit (RMF) with Canarana grass on the intake, apparent digestibility, serum biochemistry, performance, carcass traits, and meat attributes of feedlot lambs. Four distinct silage treatment types were prepared by ensiling RMF at 0 g/kg (control), 70 g/kg, 140 g/kg, and 210 g/kg (as fed) with Canarana grass. Twenty-eight male Santa Inês lambs (7 lambs per treatment), initially weighing 22.3 ± 1.0 kg at 120 days of age, were distributed in a completely randomized design and confined for a total of 96 days, including a 23-day adaptation period and 73 experimental days in a feedlot. The lambs received the treatment-silage in diets as a complete mixture with a roughage: concentrate ratio of 30:70. The inclusion of RMF in Canarana grass ensilage decreased (P < 0.05) the lambs' intake of dry matter, crude protein and metabolisable energy. The inclusion of RMF in ensilage had a quadratic effect (P < 0.05) on the digestibility of non-fibrous carbohydrates. The serum total protein and cholesterol levels decreased (P < 0.05) with the inclusion of RMF in the ensilage, but we observed no effect on the final weight and average daily gain of the lambs. The feed efficiency increased (P < 0.05) by including RMF in the Canarana grass ensilage. The RMF in the ensilage did not influence cold carcass weight and yield. The fat content of the meat decreased (P < 0.05) with the inclusion of RMF in the ensilage. It is recommended the inclusion of up to 210 g/kg of RMF in Canarana grass ensilage to increase feed efficiency and avoid impacts on the performance and carcass attributes of confined lambs.


Diet , Digestion , Sheep, Domestic , Silage , Animals , Digestion/drug effects , Male , Silage/analysis , Diet/veterinary , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Sheep, Domestic/blood , Animal Nutritional Physiological Phenomena , Animal Feed/analysis , Cucurbitaceae/chemistry , Fruit/chemistry , Random Allocation
5.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691179

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Animal Feed , Chickens , Diet , Dietary Supplements , Egg Yolk , Selenium , Vitamin E , Animals , Female , Dietary Supplements/analysis , Animal Feed/analysis , Selenium/administration & dosage , Selenium/analysis , Egg Yolk/chemistry , Vitamin E/administration & dosage , Vitamin E/analysis , Diet/veterinary , Random Allocation , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , beta Carotene/analysis , beta Carotene/administration & dosage , beta Carotene/metabolism
6.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697985

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Animal Feed , Feces/microbiology
7.
Euro Surveill ; 29(18)2024 May.
Article En | MEDLINE | ID: mdl-38699902

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Anti-Bacterial Agents , Escherichia coli , Meat , Salmonella , Animals , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/drug effects , Humans , Portugal , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Dogs , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Pets/microbiology , Whole Genome Sequencing , Food Microbiology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Colistin/pharmacology , Animal Feed/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology
8.
PLoS One ; 19(5): e0301712, 2024.
Article En | MEDLINE | ID: mdl-38701105

Clarias batrachus is a commercially important food fish. In the present study, effect of varying dietary protein levels was evaluated on the survival, growth parameters and proximate composition of C. batrachus. Diets comprising 25%, 30%, 35%, 40%, 45%, and 50% crude protein (CP) were supplied to fish in T1, T2, T3, T4, T5, and T6, respectively, at the rate of 5% of fish body weight for the entire 90 days, twice daily. Size of each stocked C. batrachus was recorded after 15 days. Results revealed 100% survival rate of C. batrachus in all treatments. Significantly highest (P<0.001) mean value of weight gain (g/fish), percent weight gain, daily growth rate, specific growth rate and protein efficiency ratio (PER) in C. batrachus were recorded, reared in T4 by feeding 40% CP in diet. The best FCR value (1.90±0.02) for C. batrachus was obtained in T4 by feeding 40%CP in diet. Mean value of water, ash, fat and protein contents (wet mass) were ranged 74.10-79.23%, 3.12-4.68%, 3.90-4.43% and 13.09-16.79% for C. batrachus in the studied treatment groups. Water content (%) was found significantly (P<0.05) higher in the body of C. batrachus for T1, T2, T3 and T6 than for T4 and T5. Ash was found significantly (P<0.05) higher in the fish reared in T4 and T5. Fat content in the wet body mass of C. batrachus was found significantly higher in T4 and T1. While, significant higher (P<0.05) values of mean protein content was noted in C. batrachus reared in T4 and T5. Body composition of C. batrachus was also categorically affected by body size, however, condition factor showed non-significant correlation in most of the relationships in the present study. Overall, results indicated that feeding appropriate diet (containing 40% CP) to the fish resulted good growth performance, lower FCR and higher protein content in the fish. Present study provides valuable knowledge of optimal dietary protein level in C. batrachus which will help in commercial success of aquaculture.


Animal Feed , Body Composition , Catfishes , Dietary Proteins , Animals , Catfishes/growth & development , Catfishes/metabolism , Dietary Proteins/analysis , Animal Feed/analysis , Diet/veterinary , Weight Gain
9.
Trop Anim Health Prod ; 56(4): 151, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703345

Twenty Saanen third parturition dairy goats were used in an on-farm 2 × 2 factorial arrangement that ran for 12 weeks, with two grazing regimes and two concentrate types. The grazing regimes evaluated were an extensive silvopastoral native rangeland (SPR) and grazing in an abandoned agricultural land (AAL). Grazing happened between 9:00 and 17:00 h. The two types of concentrate supplement were a high protein concentrate (HP = 180 g CP/kg DM and 13 MJ ME/kg DM) or high energy concentrate (HE = 110  g CP/kg DM and 14.3 MJ ME/kg DM). Goats were milked once a day, providing 250 g of concentrate supplement per goat and day. Animal variables were fat and protein corrected milk yield recorded every day, and milk composition determined for two consecutive days at the end of each experimental week. Flora in the experimental paddocks was characerised and sampled, including grasses, shrubs, trees, legumes and cacti. The data was analysed with the R software using a mixed model with day nested in period as random effect and goat as repeated measure. The SPR had greater (P = 0.002) fat and protein corrected milk yield than AAL, with no differences between concentrate type and no interaction (P > 0.05). There was an interaction (P < 0.01) between grazing regime and concentrate type for fat content in milk, where a reduction in fat content was notorious in the SPR regime. Protein content of milk was greater (P < 0.01) in SPR with no significant effects of concentrate type or the interaction. The number of plant species in SPR was greater. The native silvopastoral system supplemented with the high energy concentrate was the strategy with higher milk yield, and protein and milk fat content, although the interaction between grazing regime and supplement was significant only for milk fat content.


Animal Feed , Dairying , Diet , Dietary Supplements , Goats , Lactation , Milk , Animals , Goats/physiology , Mexico , Animal Feed/analysis , Milk/chemistry , Female , Dietary Supplements/analysis , Diet/veterinary , Dairying/methods , Animal Nutritional Physiological Phenomena , Animal Husbandry/methods
10.
Vet Med Sci ; 10(3): e1466, 2024 05.
Article En | MEDLINE | ID: mdl-38695249

BACKGROUND: In this study, we investigated the effects of swimming activity and feed restriction on digestion and antioxidant enzyme activities in juvenile rainbow trout (average body weight of 26.54 ± 0.36 g). METHODS: The stomach, liver and kidney tissues were obtained from four distinct groups: the static water group (fish were kept in static water and fed to satiation), the feeding restricted group (fish were kept in static water with a 25% feed restriction), the swimming exercised group (fish were forced to swimming at a flow rate of 1 Body Length per second (BL/s)) and the swimming exercised-feed restricted group (subjected to swimming exercise at a 1 BL/s flow rate along with a 25% feed restriction). We determined the levels of glutathione, lipid peroxidation and the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase, as well as the presence of reactive oxygen species in the tissues obtained from the fish. Additionally, the activities of pepsin, protease, lipase and arginase in these tissues were measured. RESULTS: Swimming activity and feed restriction showed different effects on the enzyme activities of the fish in the experimental groups. CONCLUSION: It can be concluded that proper nutrition and exercise positively influence the antioxidant system and enzyme activities in fish, reducing the formation of free radicals. This situation is likely to contribute to the fish's development.


Antioxidants , Oncorhynchus mykiss , Swimming , Animals , Oncorhynchus mykiss/physiology , Oncorhynchus mykiss/metabolism , Swimming/physiology , Antioxidants/metabolism , Aquaculture , Physical Conditioning, Animal/physiology , Food Deprivation/physiology , Animal Nutritional Physiological Phenomena , Digestion/physiology , Animal Feed/analysis , Liver/enzymology , Liver/metabolism
11.
Trop Anim Health Prod ; 56(4): 158, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727851

The aim of current experiment was to determine the effect of replacement of alfalfa hay with ribwort plantain (Plantago lanceolata) hay in ruminant diets on the fermentation parameters such as gas production, methane (CH4) production, true digestible dry matter (TDDM), true digestibility (TD), partitioning factor, microbial protein, and efficiency of microbial protein using in vitro gas production technique. The alfalfa hay was replaced with P. lanceolata hay in a diets isocaloric (2650 kcal/kg DM) and nitrogenic (17% CP kg DM) at the ratio of 0, 5, 10 and 15%. Partial substitution of alfalfa hay with P. lanceolata hay had no significant effect on gas and methane (ml/incubated substrate or %) production whereas the partial substitution had a significant effect on TDDM, TD, gas (ml/digested DM), CH4 (ml ml/digested DM) and microbial MP of diets. The replacement of alfalfa hay with ribwort plantain hay shifted the fermentation pattern from gas and methane production to microbial protein production. Therefore alfalfa hay can be replaced with ribwort plantain hay with high digestibility and anti-methanogenic potential in ruminant diets up to 15% to decrease methane production and improve microbial protein production. However further in vivo experiments are required to determine the effect of replacement on feed intake and animal production.


Animal Feed , Diet , Digestion , Fermentation , Medicago sativa , Methane , Plantago , Methane/metabolism , Digestion/drug effects , Animals , Plantago/chemistry , Medicago sativa/chemistry , Animal Feed/analysis , Diet/veterinary , Animal Nutritional Physiological Phenomena , Rumen/microbiology , Rumen/metabolism , Bacterial Proteins/metabolism
12.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727858

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Digestion , Nigella sativa , Seeds , Sheep, Domestic , Animals , Nigella sativa/chemistry , Animal Feed/analysis , Male , Seeds/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Dietary Supplements/analysis , Diet/veterinary , Digestion/drug effects , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Rumen/metabolism , Brassicaceae/chemistry , Random Allocation , Nutrients/analysis , Nutrients/metabolism
13.
Sci Rep ; 14(1): 10133, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698104

This study investigated the effect of the inclusion of extruded linseed and hazelnut skin on fatty acid (FA) metabolism in finishing lambs. Forty lambs were divided into 4 groups and fed for 60 d with: a conventional cereal-based diet, or the same diet with 8% of extruded linseed, or 15% of hazelnut skin, or 4% of linseed plus 7.5% of hazelnut skin as partial replacement of maize. Dietary treatments did not affect growth performances, carcass traits, and ruminal fermentation. The combined effect of linseed and hazelnut skin enriched the intramuscular fat with health promoting FA. Particularly, increases in α-linolenic acid (3.75-fold), and very long-chain n-3 poly-unsaturated FA (+ 40%) were attributed to the supplementation with linseed, rich in α-linolenic acid. In addition, increases in rumenic (+ 33%), and vaccenic (+ 59%) acids were attributed to hazelnut skin tannins modulating ruminal biohydrogenation and accumulating intermediate metabolites. The simultaneous inclusion of linseed and hazelnut skin can be a profitable strategy for enriching the intramuscular fat of lambs with health promoting FA, without adverse effects on ruminal fermentation and animal performance.


Animal Feed , Corylus , Fatty Acids , Flax , Animals , Sheep , Animal Feed/analysis , Fatty Acids/metabolism , Diet/veterinary , alpha-Linolenic Acid/metabolism , alpha-Linolenic Acid/administration & dosage , Rumen/metabolism , Dietary Supplements , Fermentation
14.
Sci Rep ; 14(1): 10353, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710742

This study was conducted to verify the essentiality of dietary cholesterol for early juvenile slipper lobster, Thenus australiensis (initial weight 4.50 ± 0.72 g, mean ± SD, CV = 0.16), and to explore the potential for interactions between dietary cholesterol and phospholipid. An 8-week experiment was conducted using six experimental feeds containing three supplemental cholesterol concentrations (0, 0.2 and 0.4% dry matter) at two supplemental phospholipid concentrations (0% and 1.0% dry matter). Dietary cholesterol concentrations of ≥ 0.2% resulted in up to threefold greater weight gain compared to 0% dietary cholesterol, but without any significant main or interactive dietary phospholipid effect. An interaction was observed for lobster survival with lowest survival (46%) recorded for combined 0% cholesterol and 0% phospholipid compared to every other treatment (71-100%). However, all surviving lobsters at 0% dietary cholesterol, regardless of dietary phospholipid level, were in poor nutritional condition. Apparent feed intake (AFI) was significantly higher at dietary cholesterol ≥ 0.2% but was lower for each corresponding dietary cholesterol level at 1% dietary phospholipid. This implied that the feed conversion ratio was improved with supplemental phospholipid. In conclusion, this study confirms the essential nature of dietary cholesterol and that dietary phospholipid can provide additional benefits.


Animal Feed , Cholesterol, Dietary , Palinuridae , Phospholipids , Animals , Phospholipids/metabolism , Cholesterol, Dietary/metabolism , Palinuridae/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
15.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Article En | MEDLINE | ID: mdl-38689728

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Animal Feed , Chromium , Dietary Supplements , Horse Diseases , Inflammation , Insulin Resistance , Magnesium , Manganese , Metabolic Syndrome , Spirulina , Animals , Horses , Inflammation/metabolism , Metabolic Syndrome/veterinary , Metabolic Syndrome/metabolism , Horse Diseases/metabolism , Horse Diseases/prevention & control , Animal Feed/analysis , Magnesium/metabolism , Male , Female
16.
BMC Vet Res ; 20(1): 177, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711036

BACKGROUND: Rubber seed kernel is a by-product derived from rubber tree plantations. It is rich in C18 unsaturated fatty acids (UFA) and has the potential to be used as a protein source for ruminant diets. This investigation has been conducted to determine the influence of rubber seed kernel pellet (RUSKEP) supplementation on in vitro rumen fermentation characteristics and fatty acid profiles in swamp buffalo. Using a completely randomized design (CRD) and supplementation of RUSKEP at 0, 2, 4, 6, 8, and 10% dry matter (DM) of substrate. RESULTS: The supplementation with RUSKEP had no effect on gas kinetics, cumulative gas production, or degradability. Ruminal pH decreased linearly (P < 0.01) and ammonia-nitrogen (NH3-N) concentration decreased quadratically (P < 0.01) by RUSKEP supplementation. The proportion of acetate (C2) decreased linearly (P < 0.01), but propionate (C3) and butyrate (C4) increased linearly (P < 0.01), resulting in a decrease in the acetate to propionate ratio (C2:C3) (P < 0.01) by RUSKEP supplementation. With an increasing level of dietary RUSKEP, there was a slight increase in UFA in the rumen by increasing the oleic acid (OA; C18:1 cis-9 + trans-9), linoleic acid (LA; C18:2 cis-9,12 + trans-9,12), and α-linolenic acid (ALA; C18:3 cis-9,12,15) concentrations (P < 0.01). CONCLUSIONS: Adding up to 10% of RUSKEP could improve in vitro rumen fermentation and C18 unsaturated fatty acids, especially ALA, in swamp buffalo.


Animal Feed , Buffaloes , Fatty Acids , Fermentation , Rumen , Seeds , Animals , Rumen/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Animal Feed/analysis , Seeds/chemistry , Dietary Supplements , Diet/veterinary , Hevea/chemistry
17.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711127

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Animal Feed , Chickens , Diet , Dietary Supplements , Meat , Spirulina , Animals , Chickens/growth & development , Animal Feed/analysis , Spirulina/chemistry , Diet/veterinary , Male , Meat/analysis , Meat/standards , Animal Nutritional Physiological Phenomena/drug effects , Muramidase/metabolism
18.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38713543

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Diptera , Hemolymph , Larva , Animals , Larva/growth & development , Larva/metabolism , Diptera/metabolism , Diptera/growth & development , Hemolymph/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Diet , Saccharomycetales/metabolism , Animal Feed/analysis , Candida/metabolism , Candida/growth & development
19.
Front Immunol ; 15: 1385896, 2024.
Article En | MEDLINE | ID: mdl-38715606

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Amino Acids, Branched-Chain , Lactation , Metabolomics , Milk , Rumen , Animals , Cattle , Female , Amino Acids, Branched-Chain/metabolism , Rumen/metabolism , Metabolomics/methods , Milk/chemistry , Milk/metabolism , Energy Metabolism , Pregnancy , Dietary Supplements , Animal Feed/analysis , Parity , Oxidative Stress , Lipid Metabolism , Metabolome
20.
Sci Rep ; 14(1): 10647, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724510

This study aimed to evaluate the safety of Moringa by comparing the effects of different gavage doses of Moringa. The general behavior, body weight, food intake, blood indexes, serum biochemical indexes, and histopathology of rats were used to determine the safety threshold and to provide a reference for the further development and use of Moringa as animal feed. 40 Sprague Dawley rats were selected and given transoral gavage for 28 consecutive days. The T1, T2 and T3 groups were observed for general behavior, body weight, and food intake. Blood and serum biochemical indices were quantified, and histopathology was performed to evaluate the effect and safety of Moringa. The results of the toxicological test showed that (1) Only T1 groups experienced diarrhea. (2) The body weight and food intake of rats in each group were normal compared with the control group. (3) The hematological and serum biochemical indices of rats in the T1 group were significantly different from those of CK but were in the normal range; (4) The results of microscopic examination of the heart, liver, spleen, lung, and kidney of rats in each group were normal, but inflammation occurred in stomach and jejunum of rats in the T1 group, but not in the ileum. The gastrointestinal tract of rats in the T2 and T3 groups were normal. (5) No abnormal death occurred in any of the treatment groups.The results of this study revealed that gavage of Moringa homogenate at a dose of 6 g/kg BW can cause diarrhea in rats. Although there is no pathological effect on weight, food intake, blood and serum biochemical indicators in rats, there are pathological textures in the gastrointestinal tissue caused by diarrhea. Therefore, the safety threshold of Moringa homogenate should be ≤ 3 g/kg BW.


Body Weight , Moringa oleifera , Rats, Sprague-Dawley , Animals , Moringa oleifera/chemistry , Rats , Male , Body Weight/drug effects , Eating/drug effects , Female , Animal Feed/analysis , Diarrhea/chemically induced , Diarrhea/veterinary
...